Menu

Büyük Lisan Modelleri ile Gelen Beş Kıymetli Risk

Büyük lisan modelleri nasıl çalışıyor?

admin 3 ayönce 0

İş dünyası ve BT başkanları, bir yandan teknolojinin müşteri hizmetleri ve yazılım geliştirme üzere alanlarda yaratacağı risk potansiyelini düşünüyor, öteki yandan da yeni gelişmelerin mümkün dezavantajları ve dikkat edilmesi gereken risklerin de giderek daha fazla farkına varıyorlar. Kuruluşların büyük lisan modellerinin (LLM) potansiyelinden yararlanabilmeleri için, teknolojinin yapılan işe ziyan verebilecek zımnî risklerini de hesaplamaları gerekiyor.

ChatGPT ve başka üretken yapay zeka araçları, LLM’ler tarafından desteklenmektedir. Muazzam ölçüde metin verisini işlemek için yapay hudut ağlarını kullanarak çalışırlar. Sözler ortasındaki kalıpları ve bunların içeriğe nazaran nasıl kullanıldığını öğrendikten sonra model, kullanıcılarla doğal lisanda etkileşime girebiliyor. ChatGPT’nin göze çarpan muvaffakiyetinin ana nedenlerinden biri latife yapma, şiir yazma ve genel olarak gerçek bir beşerden ayırt edilmesi sıkıntı bir formda bağlantı kurma yeteneğidir. ChatGPT üzere sohbet robotlarında kullanılan LLM takviyeli üretken yapay zeka modelleri, harika güçlü arama motorları üzere çalışıyor ve soruları yanıtlamak ve misyonları insan gibisi bir lisanla yerine getirmek için öğrendikleri dataları kullanıyor. İster kamuya açık modeller ister bir kuruluş içinde dahili olarak kullanılan tescilli modeller olsun, LLM tabanlı üretken yapay zeka, şirketleri belli güvenlik ve zımnilik risklerine maruz bırakabilir.

Hassas dataların fazla paylaşımı

LLM tabanlı sohbet robotları sır saklama ya da unutma konusunda pek âlâ değil. Bu, yazdığınız rastgele bir datanın model tarafından benimsenebileceği ve diğerlerinin kullanımına sunulabileceği yahut en azından gelecekteki LLM modellerini eğitmek için kullanılabileceği manasına gelir.

Telif hakkı zorlukları

LLM’lere büyük ölçüde bilgi öğretilir. Lakin bu bilgiler ekseriyetle içerik sahibinin açık müsaadesi olmadan web’den alınır. Kullanmaya devam ettiğinizde potansiyel telif hakkı problemleri oluşabilir.

Güvensiz kod

Geliştiriciler, pazara çıkış müddetlerini hızlandırmalarına yardımcı olması hedefiyle giderek daha fazla ChatGPT ve gibisi araçlara yöneliyor. Teorik olarak kod parçacıkları ve hatta tüm yazılım programlarını süratli ve verimli bir halde oluşturarak bu yardımı sağlayabilir. Lakin güvenlik uzmanları bunun tıpkı vakitte güvenlik açıkları da oluşturabileceği konusunda uyarıyor.

LLM’nin kendisini hackleme

LLM’lere yetkisiz erişim ve bunlar üzerinde değişiklik yapmak, bilgisayar korsanlarına, modelin süratli enjeksiyon atakları yoluyla hassas bilgileri ifşa etmesini sağlamak yahut engellenmesi gereken öbür hareketleri gerçekleştirmek üzere makus niyetli faaliyetler gerçekleştirmeleri için bir dizi seçenek sunabilir.

Yapay zeka sağlayıcısında bilgi ihlali

Yapay zeka modelleri geliştiren bir şirketin kendi datalarının de ihlal edilmesi, örneğin bilgisayar korsanlarının hassas özel bilgiler içerebilecek eğitim bilgilerini çalması ihtimali her vakit vardır. Birebir durum data sızıntıları için de geçerlidir.

Riskleri azaltmak için yapılması gerekenler:

  • Veri şifreleme ve anonimleştirme: Bilgileri meraklı gözlerden saklamak için LLM’lerle paylaşmadan evvel şifreleyin ve bilgi kümelerinde kimliği belirlenebilecek bireylerin kapalılığını korumak için anonimleştirme tekniklerini değerlendirin. Bilgi temizleme, modele girmeden evvel eğitim datalarından hassas detayları çıkararak birebir emele ulaşabilir.
  • Gelişmiş erişim denetimleri: Güçlü parolalar, çok faktörlü kimlik doğrulama (MFA) ve en az ayrıcalık siyasetleri, üretken yapay zeka modeline ve art uç sistemlere sadece yetkili şahısların erişebilmesini sağlamaya yardımcı olacaktır.
  • Düzenli güvenlik kontrolü: Bu, LLM’yi ve üzerine inşa edildiği üretken yapay zeka modellerini etkileyebilecek, BT sistemlerinizdeki güvenlik açıklarının ortaya çıkarılmasına yardımcı olabilir.
  • Olay müdahale planlarını uygulayın: Âlâ prova edilmiş ve sağlam bir olay müdahale planı, kuruluşunuzun rastgele bir ihlali denetim altına almak, düzeltmek ve bu ihlalden kurtulmak için süratli bir biçimde karşılık vermesine yardımcı olacaktır.
  • LLM sağlayıcıların tüm ayrıntılarını inceleyin: Tüm tedarikçilerde olduğu üzere, LLM’yi sağlayan firmanın bilgi güvenliği ve saklılığı alanında kesimin en âlâ uygulamalarını kullandığını denetim edin. Kullanıcı bilgilerinin nerede işlenip depolandığı ve modeli eğitmek için kullanılıp kullanılmadığı konusunda net açıklamalar olduğundan emin olun. Bilgiler ne kadar müddetliğine tutuluyor? Datalar üçüncü taraflarla paylaşılıyor mu? Datalarınızın eğitim gayeli kullanım tercihi değiştirebiliyor mu?
  • Geliştiricilerin sıkı güvenlik tedbirleri uyguladığından emin olun: Geliştiricileriniz kod oluşturmak için LLM’leri kullanıyorsa yanlışların üretime sızma riskini azaltmak için güvenlik testi ve meslektaş incelemesi üzere siyasetlere uyduklarından emin olun.

Oyun Haberleri

0 Kullanıcı Oyu ( 0 out of 0 )

Değerlendirme

– Advertisement – LoL RP Oyuneks
Yazar

– Advertisement –
LoL RP Oyuneks